
F04 – Simultaneous Linear Equations

Chapter F04

Simultaneous Linear Equations

Contents

1 Scope of the Chapter 2

2 Background to the Problems 2
2.1 Unique Solution of Ax = b . 2
2.2 The Least-squares Solution of Ax � b, m > n, rank(A) = n 3
2.3 Rank-deficient Cases . 4
2.4 The Rank of a Matrix . 4
2.5 Generalized Linear Least Squares Problems . 5
2.6 Calculating the Inverse of a Matrix . 5

3 Recommendations on Choice and Use of Available Routines 6
3.1 Black Box and General Purpose Routines . 6
3.2 Systems of Linear Equations . 6
3.3 Linear Least-squares Problems . 6
3.4 Sparse Matrix Routines . 7

4 Decision Trees 7

5 Index 11

6 Routines Withdrawn or Scheduled for Withdrawal 12

7 References 12

[NP3390/19/pdf] F04.1

Introduction – F04 F04 – Simultaneous Linear Equations

1 Scope of the Chapter

This chapter is concerned with the solution of the matrix equation AX = B, where B may be a
single vector or a matrix of multiple right-hand sides. The matrix A may be real, complex, symmetric,
Hermitian, positive-definite, positive-definite Toeplitz or banded. It may also be rectangular, in which
case a least-squares solution is obtained.

For a general introduction to sparse systems of equations, see the F11 Chapter Introduction, which
currently provides routines for sparse symmetric systems. Some routines for sparse problems are also
included in this chapter; they are described in Section 3.4.

2 Background to the Problems

A set of linear equations may be written in the form

Ax = b

where the known matrix A, with real or complex coefficients, is of size m by n, (m rows and n columns),
the known right-hand vector b has m components (m rows and one column), and the required solution
vector x has n components (n rows and one column). There may also be p vectors bi, i = 1, 2, . . . , p on
the right-hand side and the equations may then be written as

AX = B,

the required matrix X having as its p columns the solutions of Axi = bi, i = 1, 2, . . . , p. Some routines
deal with the latter case, but for clarity only the case p = 1 is discussed here.

The most common problem, the determination of the unique solution of Ax = b, occurs when m = n and
A is not singular, that is rank(A) = n. This is discussed in Section 2.1 below. The next most common
problem, discussed in Section 2.2 below, is the determination of the least-squares solution of Ax � b
required when m > n and rank(A) = n, i.e., the determination of the vector x which minimizes the norm
of the residual vector r = b−Ax. All other cases are rank deficient, and they are treated in Section 2.3.

Most of the routines of the chapter are based on those published in the book edited by Wilkinson and
Reinsch [3]. We are very grateful to the late Dr J H Wilkinson FRS for his help and interest during the
implementation of this chapter of the Library. notintro=”yes”

2.1 Unique Solution of Ax = b

Most routines in this chapter solve this particular problem. The computation starts with the triangular
decomposition A = PLU , where L and U are respectively lower and upper triangular matrices and P is
a permutation matrix, chosen so as to ensure that the decomposition is numerically stable. The solution
is then obtained by solving in succession the simpler equations

Ly = PT b
Ux = y

the first by forward-substitution and the second by back-substitution.

If A is real symmetric and positive-definite, U = LT , while if A is complex Hermitian and positive-definite,
U = LH ; in both these cases P is the identity matrix (i.e., no permutations are necessary). In all other
cases either U or L has unit diagonal elements.

Due to rounding errors the computed ‘solution’x0, say, is only an approximation to the true solution x.
This approximation will sometimes be satisfactory, agreeing with x to several figures, but if the problem
is ill-conditioned then x and x0 may have few or even no figures in common, and at this stage there is
no means of estimating the ‘accuracy’ of x0.

There are three possible approaches to estimating the accuracy of a computed solution.

One way to do so, and to ‘correct’ x0 when this is meaningful (see next paragraph), involves computing
the residual vector r = b−Ax0 in extended precision arithmetic, and obtaining a correction vector d by
solving PLUd = r. The new approximate solution x0 + d is usually more accurate and the correcting
process is repeated until (a) further corrections are negligible or (b) they show no further decrease.

F04.2 [NP3390/19/pdf]

F04 – Simultaneous Linear Equations Introduction – F04

It must be emphasised that the ‘true’ solution x may not be meaningful, that is correct to all figures
quoted, if the elements of A and b are known with certainty only to say p figures, where p is smaller than
the word-length of the computer. The first correction vector d will then give some useful information
about the number of figures in the ‘solution’ which probably remain unchanged with respect to maximum
possible uncertainties in the coefficients.

An alternative approach to assessing the accuracy of the solution is to compute or estimate the condition
number of A, defined as

κ(A) = ‖A‖‖A−1‖.
Roughly speaking, errors or uncertainties in A or b may be amplified in the solution by a factor κ(A).
Thus, for example, if the data in A and b are only accurate to 5 digits and κ(A) ≈ 103, then the solution
cannot be guaranteed to have more than 2 correct digits. If κ(A) ≥ 105, the solution may have no
meaningful digits.

To be more precise, suppose that

Ax = b and (A+ δA)(x + δx) = b+ δb.

Here δA and δb represent perturbations to the matrices A and b which cause a perturbation δx in the
solution. We can define measures of the relative sizes of the perturbations in A, b and x as

ρA =
‖δA‖
‖A‖ , ρb =

‖δb‖
‖b‖ and ρx =

‖δx‖
‖x‖ respectively.

Then
ρx ≤ κ(A)

1− κ(A)ρA

(ρA + ρb)

provided that κ(A)ρA < 1. Often κ(A)ρA � 1 and then the bound effectively simplifies to

ρx ≤ κ(A)(ρA + ρb).

Hence, if we know κ(A), ρA and ρb, we can compute a bound on the relative errors in the solution. Note
that ρA, ρb and ρx are defined in terms of the norms of A, b and x. If A, b or x contains elements of
widely differing magnitude, then ρA, ρb and ρx will be dominated by the errors in the larger elements,
and ρx will give no information about the relative accuracy of smaller elements of x.

A third way to obtain useful information about the accuracy of a solution is to solve two sets of equations,
one with the given coefficients, which are assumed to be known with certainty to p figures, and one with
the coefficients rounded to (p− 1) figures, and to count the number of figures to which the two solutions
agree. In ill-conditioned problems this can be surprisingly small and even zero.

2.2 The Least-squares Solution of Ax � b, m > n, rank(A) = n

The least-squares solution is the vector x̂ which minimizes the sum of the squares of the residuals,

S = (b−Ax̂)T (b−Ax̂) = ‖b−Ax̂‖2
2.

The solution is obtained in two steps:

(i) Householder Transformations are used to reduce A to ‘simpler form’ via the equation QA = R,
where R has the appearance (

R̂

0

)

with R̂ a non-singular upper triangular n by n matrix and 0 a zero matrix of shape (m− n) by n.
Similar operations convert b to Qb = c, where

c =
(
c1
c2

)

with c1 having n rows and c2 having (m− n) rows.

(ii) The required least-squares solution is obtained by back-substitution in the equation

R̂x̂ = c1.

[NP3390/19/pdf] F04.3

Introduction – F04 F04 – Simultaneous Linear Equations

Again due to rounding errors the computed x̂0 is only an approximation to the required x̂, but as in
Section 2.1, this can be improved by ‘iterative refinement’. The first correction d is the solution of the
least-squares problem

Ad = b−Ax̂0 = r

and since the matrix A is unchanged, this computation takes less time than that of the original x̂0. The
process can be repeated until further corrections are (a) negligible or (b) show no further decrease.

2.3 Rank-deficient Cases

If, in the least-squares problem just discussed, rank(A) < n, then a least-squares solution exists but it is
not unique. In this situation it is usual to ask for the least-squares solution ‘of minimal length’, i.e., the
vector x which minimizes ‖x‖2, among all those x for which ‖b−Ax‖2 is a minimum.

This can be computed from the Singular Value Decomposition (SVD) of A, in which A is factorized as

A = QDPT

where Q is an m by n matrix with orthonormal columns, P is an n by n orthogonal matrix and D is
an n by n diagonal matrix. The diagonal elements of D are called the ‘singular values’ of A; they are
non-negative and can be arranged in decreasing order of magnitude:

d1 ≥ d2 ≥ . . . ≥ dn ≥ 0.

The columns of Q and P are called respectively the left and right singular vectors of A. If the singular
values dr+1, . . . , dn are zero or negligible, but dr is not negligible, then the rank of A is taken to be r (see
also Section 2.4) and the minimal length least-squares solution of Ax � b is given by

x̂ = D†QT b

where D† is the diagonal matrix with diagonal elements d−1
1 , d−1

2 , . . . , d−1
r , 0, . . . , 0.

The SVD may also be used to find solutions to the homogeneous system of equations Ax = 0, where A
is m by n. Such solutions exist if and only if rank(A) < n, and are given by

x =
n∑

i=r+1

αipi

where the αi are arbitrary numbers and the pi are the columns of P which correspond to negligible
elements of D.

The general solution to the rank-deficient least-squares problem is given by x̂+x, where x̂ is the minimal
length least-squares solution and x is any solution of the homogeneous system of equations Ax = 0.

2.4 The Rank of a Matrix

In theory the rank is r if n − r elements of the diagonal matrix D of the singular value decomposition
are exactly zero. In practice, due to rounding and/or experimental errors, some of these elements have
very small values which usually can and should be treated as zero.

For example, the following 5 by 8 matrix has rank 3 in exact arithmetic

22 14 −1 −3 9 9 2 4
10 7 13 −2 8 1 −6 5
2 10 −1 13 1 −7 6 0
3 0 −11 −2 −2 5 5 −2
7 8 3 4 4 −1 1 2

 .

On a computer with 7 decimal digits of precision the computed singular values were:

3.5× 101, 2.0× 101, 2.0× 101, 1.3× 10−6, 5.5× 10−7

and the rank would be correctly taken to be 3.

F04.4 [NP3390/19/pdf]

F04 – Simultaneous Linear Equations Introduction – F04

It is not, however, always certain that small computed singular values are really zero. With the 7 by 7
Hilbert matrix, for example, where aij = 1/(i+ j − 1), the singular values are

1.7, 2.7× 10−1, 2.1× 10−2, 1.0× 10−3, 2.9× 10−5, 4.9× 10−7, 3.5× 10−9.

Here there is no clear cut-off between small (i.e., negligible) singular values and larger ones. In fact,
in exact arithmetic, the matrix is known to have full rank and none of its singular values is zero. On
a computer with 7 decimal digits of precision, the matrix is effectively singular, but should its rank be
taken to be 6, or 5, or 4?

It is therefore impossible to give an infallible rule, but generally the rank can be taken to be the number of
singular values which are neither zero nor very small compared with other singular values. For example,
if there is a sharp decrease in singular values from numbers of order unity to numbers of order 10−7,
then the latter will almost certainly be zero in a machine in which 7 significant decimal figures is the
maximum accuracy. Similarly for a least-squares problem in which the data is known to about four
significant figures and the largest singular value is of order unity then a singular value of order 10−4 or
less should almost certainly be regarded as zero.

It should be emphasised that rank determination and least-squares solutions can be sensitive to the
scaling of the matrix. If at all possible the units of measurement should be chosen so that the elements
of the matrix have data errors of approximately equal magnitude.

2.5 Generalized Linear Least Squares Problems

The simple type of linear least-squares problem described in Section 2.2 can be generalized in various
ways.

(1) linear least-squares problems with equality constraints:

find x to minimize S = ‖c−Ax‖2
2 subject to Bx = d,

where A is m by n and B is p by n, with p ≤ n ≤ m+ p. The equations Bx = d may be regarded
as a set of equality constraints on the problem of minimizing S. Alternatively the problem may be
regarded as solving an overdetermined system of equations(

A
B

)
x =

(
c
d

)
,

where some of the equations (those involving B) are to be solved exactly, and the others (those
involving A) are to be solved in a least-squares sense. The problem has a unique solution on the

assumptions that B has full row rank p and the matrix
(

A
B

)
has full column rank n. (For linear

least-squares problems with inequality constraints, refer to Chapter E04.)

(2) general Gauss–Markov linear model problems:

minimize ‖y‖2 subject to d = Ax+By,

where A is m by n and B is m by p, with n ≤ m ≤ n + p. When B = I, the problem reduces to
an ordinary linear least-squares problem. When B is square and nonsingular, it is equivalent to a
weighted linear least-squares problem:

find x to minimize ‖B−1(d−Ax)‖2.

The problem has a unique solution on the assumptions that A has full column rank n, and the
matrix (A,B) has full row rank m.

2.6 Calculating the Inverse of a Matrix

The routines in this chapter can also be used to calculate the inverse of a square matrix A by solving the
equation

AX = I

where I is the identity matrix. However, solving the equations AX = B by calculation of the inverse of
the coefficient matrix A, i.e., by X = A−1B, is definitely not recommended.

Similar remarks apply to the calculation of the pseudo inverse of a singular or rectangular matrix.

[NP3390/19/pdf] F04.5

Introduction – F04 F04 – Simultaneous Linear Equations

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Black Box and General Purpose Routines

Most of the routines in this chapter are categorised as Black Box routines or General Purpose routines.

Black Box routines solve the equations Axi = bi, i = 1, 2, . . . , p in a single call with the matrix A and the
right-hand sides bi being supplied as data. These are the simplest routines to use and are suitable when
all the right-hand sides are known in advance and do not occupy too much storage.

General Purpose routines, in general, require a previous call to a routine in Chapter F01 or Chapter
F03 to factorize the matrix A. This factorization can then be used repeatedly to solve the equations for
one or more right-hand sides which may be generated in the course of the computation. The Black Box
routines simply call a factorization routine and then a general purpose routine to solve the equations.

The two routines F04MBF and F04QAF which use an iterative method for sparse systems of equations
do not fit easily into this categorisation, but are classified as general purpose routines in the decision
trees and indexes.

3.2 Systems of Linear Equations

Most of the routines in this chapter solve linear equations Ax = b when A is n by n and a unique solution
is expected (case 2.1). If this turns out to be untrue the routines go to a failure exit. The matrix Amay be
‘general’ real or complex, or may have special structure or properties, e.g. it may be banded, tridiagonal,
almost block-diagonal, sparse, symmetric, Hermitian, positive-definite (or various combinations of these).

It must be emphasised that it is a waste of computer time and space to use an inappropriate routine, for
example one for the complex case when the equations are real. It is also unsatisfactory to use the special
routines for a positive-definite matrix if this property is not known in advance.

Routines are given for calculating the approximate solution, that is solving the linear equations just once,
and also for obtaining the accurate solution by successive iterative corrections of this first approximation,
as described in Section 2.1. The latter, of course, are more costly in terms of time and storage, since
each correction involves the solution of n sets of linear equations and since the original A and its LU
decomposition must be stored together with the first and successively corrected approximations to the
solution. In practice the storage requirements for the ‘corrected’ routines are about double those of the
‘approximate’ routines, though the extra computer time is not prohibitive since the same matrix and the
same LU decomposition is used in every linear equation solution.

Two routines are provided – F04YCF for real matrices, F04ZCF for complex matrices – which can return
a cheap but reliable estimate of ‖A−1‖, and hence an estimate of the condition number κ(A) (see Section
2.1). These routines can be used in conjunction with most of the linear equation solving routines in this
chapter: further advice is given in the routine documents.

Other routines for solving linear equation systems, computing inverse matrices, and estimating condition
numbers can be found in Chapter F07, which contains LAPACK software.

3.3 Linear Least-squares Problems

For case 2.2, when m ≥ n and a unique least-squares solution is expected, there are two routines for a
general real A, one of which (F04JGF) computes a first approximation and the other (F04AMF) computes
iterative corrections. If it transpires that rank(A) < n, so that the least-squares solution is not unique,
then F04AMF takes a failure exit, but F04JGF proceeds to compute the minimal length solution by using
the SVD (see below).

If A is expected to be of less than full rank then one of the routines for calculating the minimal length
solution may be used. Currently these routines are only for the ‘approximate’ solution. These routines
determine the rank based upon a user-supplied tolerance to decide which elements are negligible, routines
based upon the SVD providing the most reliable guide.

For m 	 n the use of the SVD is not significantly more expensive than the use of routines based upon
the QR factorization.

F04.6 [NP3390/19/pdf]

F04 – Simultaneous Linear Equations Introduction – F04

If A is complex and rank(A) = n, the problem can be solved by calling F04KMF with p = 0 (dummy
arrays of dimension 1 must be supplied for the parameters B and D). If A is expected to be of less
than full rank, the problem can be solved by calls to F02XEF (to compute the SVD of A) and F06SAF
(CGEMV/ZGEMV).

Problems with linear equality constraints can be solved by F04JLF (for real data) or by F04KLF (for
complex data), provided that the problems are of full rank. Problems with linear inequality constraints
can be solved by E04NCF in Chapter E04.

General Gauss–Markov linear model problems, as formulated in Section 2.5, can be solved by F04JMF
(for real data) or by F04KMF (for complex data).

3.4 Sparse Matrix Routines

Routines specifically for real sparse matrices should be used only when the number of non-zero elements
is very small, less than, say, 10% of the n2 elements of A, and the matrix does not have a relatively small
band width.

Chapter F11 contains routines for the iterative solution of real sparse symmetric linear systems, as well
as a routine F11JBF which may be used for direct solution of real sparse symmetric positive-definite
problems. There are two routines in Chapter F04 for solving sparse linear equations (F04AXF and
F04QAF). F04AXF utilizes a factorization of the matrix A obtained from F01BRF or F01BSF, while
F04QAF uses an iterative technique and requires a user-supplied function to compute matrix-vector
products Ac and AT c for any given vector c. F04AXF can be utilised to solve for several right-hand
sides, but the original matrix has to be explicitly supplied and is overwritten by the factorization, and
the storage requirements will usually be substantially more than those of the iterative routines.

F04QAF solves sparse least-squares problems by an iterative technique, and also allows the solution of
damped (regularised) least-squares problems (see the routine document for details).

4 Decision Trees

If at any stage the answer to a question is ‘Don’t know’ this should be read as ‘No’.

The name of the routine (if any) that should be used to factorize the matrix A is given in brackets after
the name of the routine for solving the equations.

[NP3390/19/pdf] F04.7

Introduction – F04 F04 – Simultaneous Linear Equations

Tree 1: Black Box routines for unique solution of Ax = b

Is A a real
matrix?

no

no

Is A a band
matrix?

yesyes Is A a tridiagonal
matrix?

Is A a Toeplitz
matrix?

no

Is B a single
right−hand side?

yes

Is A a tridiagonal
matrix?

Are the equations
the Yule−Walker
equations?

yes

no

yes

no

no

no no

Is B a single
right−hand side?

Is B a single
right−hand side?

no

no

F04ADF

F04FAF

F04ACF

F04FEF

F04FFF

F04ASF

F04ABF

F04EAF

F04ARF

no

F04AAF

F04ATF

F04AEF

yes

yes

yes

yes

yes

yes

Are storage
and time more
important than
accuracy?

Is A a symmetric
positive−definite
matrix?

F04.8 [NP3390/19/pdf]

F04 – Simultaneous Linear Equations Introduction – F04

Tree 2: General Purpose routines for unique solution of Ax = b
(a) Real matrix

Is A a sparse
matrix and not
banded?

Chapter
F11

no

Do you wish to use
an iterative method?

Does A have the same sparsity
pattern as a previously used matrix?

no

no

yesyes

no

yes

yes

no

yes

no

no no

yes

yes

yes

no

no

no

Are the equations the
Yule−Walker equations?

Variable band width?

no

Is one triangle of A
stored as a linear
array?

Is one triangle of A
stored as a linear array?

Is A a band matrix?

Is A stored as a linear
array?

no

yes

yes

Is A tridiagonal?

yes

yes

Is A symmetric?
yes yes yes

yes

yes
no

no

Is A triangular?

Is A almost block
diagonal?

Is A a band matrix?

no

no

yes

no

no

F07GEF (F07GDF)

F04QAF
F11JBF (F11JAF)

F04AXF

F04AXF

Is A symmetric? Is A positive−definite? Is A a band matrix?
F04MCF
(F01MCF)

Is A a Toeplitz
matrix?

F07HEF (F07HDF)

F04MEF

F04MFF

F07FEF (F07FDF)

F07PEF (F07PDF)

F07MEF (F07MDF)

F07VEF

F07UEF

F07TEF

F04LEF (F01LEF)

F04LHF (F01LHF)

F07BEF (F07BDF)

Is A symmetric
positive−definite?

F07AEF (F07ADF)

yes

[NP3390/19/pdf] F04.9

Introduction – F04 F04 – Simultaneous Linear Equations

(b) Complex matrix

no

no

yesyes

no

no

yes

no

Is one triangle of
A stored as a
linear array?

Is one triangle of A
stored as a linear array?

Is A a band matrix?

Is A stored as a linear
array?

no

yes

no

yes

Is A positive−definite? Is A a band matrix?

no

F07HSF
(F07HRF)

yes

no

Is one triangle of A
stored as a linear array?

F07NSF (F07NRF)

no

F07VSF

F07USF

F07TSF

Is A a band matrix?

yes

yes

Is A triangular?

Is A symmetric?

Is A Hermitian?

yes

yes

yes

F07GSF
(F07GRF)

F07FSF (F07FRF)

F07PSF (F07PRF)

F07MSF (F07MRF)

F07QSF (F07QRF)

F07BSF (F07BRF)

F07ASF (F07ARF)

no

F04.10 [NP3390/19/pdf]

F04 – Simultaneous Linear Equations Introduction – F04

Tree 3: Least-squares and homogeneous equations (without constraints)

no

yes

no

no

Is A sparse?
yes

yes

yes yes

yes

Is the problem
Ax = 0?

F04JAF

Is m < n?

F04QAF

Are storage and time
more important than
accuracy?

Is rank(A) = n? F04JGF

F04JDF

no

no

no
F04AMF

F04JAF or F04JGF

F04JDF

Is m > n?

5 Index

(i) Black Box Routines, Ax = b

Complex Matrix, F04ADF
Real Band Symmetric Positive-definite Matrix, F04ACF
Real Matrix, Multiple Right-hand Sides, F04AAF
Real Matrix, Single Right-hand Side, F04ARF
Real Matrix, Multiple Right-hand Sides, Iterative Refinement, F04AEF
Real Matrix, Single Right-hand Side, Iterative Refinement, F04ATF
Real Symmetric Positive-definite Matrix, Multiple Right-hand Sides,

Iterative Refinement, F04ABF
Real Symmetric Positive-definite Matrix, Single Right-hand Side,

Iterative Refinement, F04ASF
Real Symmetric Positive-definite Toeplitz Matrix,

General Right-hand Side, F04FFF
Real Symmetric Positive-definite Toeplitz Matrix,

Yule–Walker Equations, F04FEF
Real Tridiagonal Matrix, F04EAF
Real Tridiagonal Symmetric Positive-definite Matrix, F04FAF

(ii) General Purpose Routines, Ax = b

Real Almost Block-diagonal Matrix, F04LHF
Real Band Symmetric Positive-definite Matrix, Variable Bandwidth, F04MCF
Real Matrix, F04AJF
Real Matrix, Iterative Refinement, F04AHF
Real Sparse Matrix, Direct Method, F04AXF
Real Sparse Matrix, Iterative Method, F04QAF
Real Symmetric Positive-definite Matrix, F04AGF
Real Symmetric Positive-definite Matrix,

Iterative Refinement, F04AFF

[NP3390/19/pdf] F04.11

Introduction – F04 F04 – Simultaneous Linear Equations

Real Symmetric Positive-definite Toeplitz Matrix,
General Right-hand Side, Update Solution, F04MFF

Real Symmetric Positive-definite Toeplitz Matrix,
Yule–Walker Equations, Update Solution, F04MEF

Real Tridiagonal Matrix, F04LEF

(iii) Least-squares and Homogeneous Equations

Complex general Gauss–Markov linear model problem F04KLF
Complex problem with linear equality constraints F04KMF
Real m by n Matrix, m ≥ n, Minimal Solution, F04JAF
Real m by n Matrix, m ≥ n, Rank = n or Minimal Solution, F04JGF
Real m by n Matrix, m ≤ n, Minimal Solution, F04JDF
Real m by n Matrix, Rank = n, Iterative Refinement, F04AMF
Real general Gauss–Markov linear model problem F04JLF
Real problem with linear equality constraints F04JMF
Real Sparse Matrix, F04QAF

(iv) Service Routines

Complex Matrix, Norm and Condition Number Estimation F04ZCF
Real Matrix, Norm and Condition Number Estimation F04YCF

6 Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have either been withdrawn or superseded. Advice on replacing
calls to these routines is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded
Routines’.
F04ALF F04ANF F04AQF F04AWF F04AYF F04AZF
F04LDF F04MAF F04MBF F04NAF

7 References

[1] Golub G H and Van Loan C F (1996) Matrix Computations Johns Hopkins University Press (3rd
Edition), Baltimore

[2] Lawson C L and Hanson R J (1974) Solving Least-squares Problems Prentice–Hall

[3] Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

F04.12 (last) [NP3390/19/pdf]

